Lanthanum fluoride nanoparticles for radiosensitization of tumors
نویسندگان
چکیده
Dense inorganic nanoparticles have recently been identified as promising radiosensitizers. In addition to dose enhancement through increased attenuation of ionizing radiation relative to biological tissue, scintillating nanoparticles can transfer energy to coupled photosensitizers to amplify production of reactive oxygen species, as well as provide UVvisible emission for optical imaging. Lanthanum fluoride is a transparent material that is easily prepared as nanocrystals, and which can provide radioluminescence at a number of wavelengths through simple substitution of lanthanum ions with other luminescent lanthanides. We have prepared lanthanum fluoride nanoparticles doped with cerium, terbium, or both, that have good spectral overlap with chlorin e6 or Rose Bengal photosensitizer molecules. We have also developed a strategy for stable conjugation of the photosensitizers to the nanoparticle surface, allowing for high energy transfer efficiencies on a per molecule basis. Additionally, we have succeeded in making our conjugates colloidally stable under physiological conditions. Here we present our latest results, using nanoparticles and nanoparticle-photosensitizer conjugates to demonstrate radiation dose enhancement in B16 melanoma cells. The effects of nanoparticle treatment prior to 250 kVp x-ray irradiation were investigated through clonogenic survival assays and cell cycle analysis. Using a custom apparatus, we have also observed scintillation of the nanoparticles and conjugates under the same conditions that the cell samples are irradiated.
منابع مشابه
Rare Earth Doped Nanoparticles in Organic and Inorganic Host Materials for Application in Integrated Optics
The preparation and the optical properties of lanthanum fluoride (LaF3) nanoparticles doped with erbium and neodymium will be discussed. Organic and inorganic materials in the form of polymers and sol-gels were used to serve as the hosts for the inorganic nanoparticles, respectively. The organic host material has been synthesized such that it is photo-crosslinkable to facilitate straightforward...
متن کاملRadiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles
Introduction: A main choice for cancer treatment is radiotherapy. But, the radiotherapy disadvantage is damages caused by radiation given to normal tissues/organs surrounding cancer. One way to avoid this is via increasing radiosensitization of cancer cells. Gold nanoparticles (GNPs) have shown sensitizing effect on cancer cells by enhancing their absorbed dose. Unlike earlier ...
متن کاملPhotoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules.
CexLa1-xF3 nanoparticles have been proposed for use in nanoscintillator-photosensitizer systems, where excitation of nanoparticles by ionizing radiation would result in energy transfer to photosensitizer molecules, effectively combining the effects of radiotherapy and photodynamic therapy. Thus far, there have been few experimental investigations of such systems. This study reports novel synthe...
متن کاملRadiosensitization effect of ZnO nanoparticles in lung cancer cells at clinically relevant megavoltage energy
Introduction: Radiation therapy is one of the major modalities that have long been used in cancer treatment. Radiotherapy is often accompanied by early and late toxicity and side effects and narrow therapeutic window. Similarity in radiation absorption properties of tumors and neighboring healthy tissues is often the reason for low specificity of radiation therapy. Development ...
متن کاملThe role and mechanisms of zinc oxide nanoparticles in the improvement of the radiosensitivity of lung cancer cells in clinically relevant megavoltage radiation energies in-vitro
Objective(s): Semiconductor zinc oxide nanoparticles (ZnO NPs) have unique properties, such as inherent selectivity and photosensitization effects under ultraviolet (UV) radiation. ZnO NPs serve as promising anticancer agents. However, UV radiation limits their penetration into the body. In most clinical settings, it is essential to use high-energy photons in the treatment of deep-seated tumors...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016